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Abstract. Dispersion relations provide a powerful tool to analyse the electromagnetic form factors of the
nucleon in both the space-like and the time-like regions with constraints from other experiments, unitarity,
and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and
present first results from our ongoing form factor analysis. We also calculate the two-pion continuum
contribution to the isovector spectral functions drawing upon the new high statistics measurements of the
pion form factor by the CMD-2, KLOE, and SND collaborations.

PACS. 11.55.Fv Dispersion relations — 13.40.Gp Electromagnetic form factors — 14.20.Dh Protons and

neutrons

1 Introduction

The electromagnetic form factors of the nucleon offer a
unique window on strong interaction dynamics over a wide
range of momentum transfers [1,2]. At small momentum
transfers, they are sensitive to the gross properties of the
nucleon like the charge and magnetic moment, while at
high momentum transfers they encode information on the
quark substructure of the nucleon as described by QCD.

Their detailed understanding is important for unravel-
ing aspects of perturbative and nonperturbative nucleon
structure. The form factors also contain important in-
formation on nucleon radii and vector meson coupling
constants. Moreover, they are an important ingredient in
a wide range of experiments from Lamb shift measure-
ments [3] to measurements of the strangeness content of
the nucleon [4].

With the advent of the new continuous beam elec-
tron accelerators such as CEBAF (Jefferson Lab.), ELSA
(Bonn), and MAMI (Mainz), a wealth of precise data for
space-like momentum transfers has become available [5].
Due to the difficulty of the experiments, the time-like form
factors are less well known. While there is a fair amount
of information on the proton time-like form factors [6,7,
8,9,10], only one measurement of the neutron form factor
from the pioneering FENICE experiment [11] exists.

It has been known for a long time that the pion plays
an important role in the long-range structure of the nu-
cleon [12]. This connection was made more precise us-
ing dispersion theory in the 1950’s [13,14]. Subsequently,
Frazer and Fulco have written down partial-wave dis-
persion relations that relate the nucleon electromagnetic
structure to pion-nucleon (7N) scattering and predicted

# e-mail: hammer@phys.washington.edu

the existence of the p-resonance [15,16]. Despite this suc-
cess, the central role of the 27 continuum in the isovec-
tor spectral function has often been ignored. Hohler and
Pietarinen pointed out that this omission leads to a gross
underestimate of the isovector radii of the nucleon [17].
They first performed a consistent dispersion analysis of the
electromagnetic form factors of the nucleon [18] including
the 27 continuum derived from the pion form factor and
wN-scattering data [19]. In the mid-nineties, this analysis
has been updated by Mergell, Meifiner, and Drechsel [20]
and was later extended to include data in the time-like
region [21,22]. Recently, the new precise data for the neu-
tron electric form factor have been included as well [23].

Using chiral perturbation theory (ChPT), the long-
range pionic structure of the nucleon can be connected
to the Goldstone boson dynamics of QCD [24]. The non-
resonant part of the 27 continuum is in excellent agree-
ment with the phenomenological analysis [25] and the p-
meson contribution can be included as well [26,27,28]. It
is well known that vector mesons play an important role
in the electromagnetic structure of the nucleon, see, e.g.,
refs. [15,29,30,31,32,33], and the remaining contributions
to the spectral function have usually been approximated
by vector meson resonances.

A new twist to this picture was recently given by Fried-
rich and Walcher [34]. They interpreted the form factor
data based on a phenomenological fit with an ansatz for
the pion cloud using the idea that the proton can be
thought of as virtual neutron-positively charged pion pair.
A very long-range contribution to the charge distribution
in the Breit frame extending out to about 2 fm was found
and attributed to the pion cloud. This was shown to be
in conflict with the phenomenologically known 27 contin-
uum and ChPT by Hammer, Drechsel, and Meifiner [35].
We will address this conundrum in more detail in sect. 9.
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Fig. 1. The nucleon matrix element of the electromagnetic
current j;™.

In this paper we give a brief introduction into disper-
sion theory for nucleon form factors and present prelim-
inary results from our ongoing form factor analysis. We
also calculate the two-pion continuum contribution to the
isovector spectral functions drawing upon the new high
statistics measurements of the pion form factor by the
CMD-2, KLOE, and SND collaborations. Finally we ad-
dress the question of the range of the pion cloud and give
an outlook on future work.

2 Definitions

The electromagnetic (em) structure of the nucleon is de-
termined by the matrix element of the current operator
Ju" between nucleon states as illustrated in fig. 1.

Using Lorentz and gauge invariance, this matrix ele-
ment can be expressed in terms of two form factors,

W1I) = 50 (R + 12D g | u), (1)
where M is the nucleon mass and ¢t = (p’ — p)? the four-
momentum transfer. For data in the space-like region, it
is often convenient to use the variable Q2 = —t > 0. The
functions Fy(t) and Fs(t) are the Dirac and Pauli form
factors, respectively. They are normalized at ¢ = 0 as

Flp(()) =1, F{I’(O) =0, F2p(0) = Kp, FQH(O) = Kn, (2>

with k, = 1.79 and &,, = —1.91 the anomalous magnetic
moments of protons and neutrons in nuclear magnetons,
respectively.

It is convenient to work in the isospin basis and to
decompose the form factors into isoscalar and isovector
parts,

1
Fr = S ED,
where i = 1, 2.

The experimental data are usually given for the Sachs
form factors

Gp(t) = Fi(t) — TF(t), (4)
Gu(t) = Fi(t) + Fa(t),
where 7 = —t/(4M?). In the Breit frame, G and G 5y may
be interpreted as the Fourier transforms of the charge and
magnetization distributions, respectively.

The nucleon radii can be defined from the low-t expan-
sion of the form factors,

F(t)=F(0) [1+t(r*)/6+...], (5)

1
F= (- FD, )

K3

where F(t) is a generic form factor. In the case of the
electric and Dirac form factors of the neutron, G'% and
F, the expansion starts with the term linear in ¢ and the
normalization factor F'(0) is dropped.

3 Dispersion relations and spectral
decomposition

Based on unitarity and analyticity, dispersion relations
relate the real and imaginary parts of the electromagnetic
(em) nucleon form factors. Let F'(t) be a generic symbol
for any one of the four independent nucleon form factors.
We write down an unsubtracted dispersion relation of the
form
1 / * Im F(t)
t

F(t) = dt’, (6)

T Sy, UV —t—ic
where ¢ty is the threshold of the lowest cut of F(t) (see
below) and the ie defines the integral for values of ¢ on the
cut.! Equation (6) relates the em structure of the nucleon
to its absorptive behavior.

The imaginary part Im F entering eq. (6) can be ob-
tained from a spectral decomposition [13,14]. For this pur-
pose it is most convenient to consider the em current ma-
trix element in the time-like region (¢ > 0), which is re-
lated to the space-like region (¢ < 0) via crossing symme-
try. The matrix element can be expressed as

Ju = (N(p)N(p)ljz"(0)|0) (7)

= 4(p) |t + 12 o+ 5| ),

where p and p are the momenta of the nucleon and anti-
nucleon created by the current j;™, respectively. The four-
momentum transfer in the time-like region is t = (p +p)2.

Using the LSZ reduction formalism, the imaginary part
of the form factors is obtained by inserting a complete set
of intermediate states as [13,14]

Im J,, = Z (22N Y (el Ty ()1 (®)
A

(A7 (0)[0) v(B) 6% (p + P — pa),

where A is a nucleon spinor normalization factor, Z is
the nucleon wave function renormalization, and Jy () =
JT(z)v0 with Jy(z) a nucleon source. This decomposition
is illustrated in fig. 2. It relates the spectral function to
on-shell matrix elements of other processes.

The states |\) are asymptotic states of momentum py
which are stable with respect to the strong interaction.
They must carry the same quantum numbers as the cur-
rent ji™: I€(JPC) = 0= (177) for the isoscalar current
and I¢(JPC) = 17(177) for the isovector component of

! The convergence of an unsubtracted dispersion relation for
the form factors has been assumed. We could have used a once
subtracted dispersion relation as well since the normalization
of the form factors is known.



H.-W. Hammer: Nucleon form factors in dispersion theory 51

(Y | O

Fig. 2. The spectral decomposition of the nucleon matrix el-
ement of the electromagnetic current j;™.

Ji" Furthermore, they have zero net baryon number. Be-
cause of G-parity, states with an odd number of pions only
contribute to the isoscalar part, while states with an even
number contribute to the isovector part. For the isoscalar
part the lowest mass states are: 37,57, ..., KK, KKn,...;
for the isovector part they are: 2w, 4, . . ..

Associated with each intermediate state is a cut start-
ing at the corresponding threshold in ¢ and running to
infinity. As a consequence, the spectral function Im F'(¢)
is different from zero along the cut from ty to oo with
to = 4(9) M2 for the isovector (isoscalar) case.

The spectral functions are the central quantities in
the dispersion-theoretical approach. Using eqgs. (7,8), they
can in principle be constructed from experimental data.
In practice, this program can only be carried out for the
lightest two-particle intermediate states (27 and K K) [19,
36,37].

The longest-range, and therefore at low momentum
transfer most important pion cloud contribution comes
from the 27 intermediate state in the isovector form fac-
tors. A new calculation of this contribution will be dis-
cussed in the following section.

4 Two-pion continuum

In this section, we re-evaluate the 27 contribution in a
model-independent way [38] using the latest experimental
data for the pion form factor from CMD-2 [39], KLOE [40],
and SND [41].

We follow ref. [42] and express the 27 contribution
to the isovector spectral functions in terms of the pion
charge form factor Fj(t) and the P-wave mm — NN am-
plitudes f1(t). The 27 continuum is expected to be the
dominant contribution to the isovector spectral function
from threshold up to masses of about 1GeV [42]. Here,
we use the expressions

(J? 1
3
Tm G, (1) = = (1) (1), 9)

V2t

where ¢; = \/t/4 — M2. The imaginary parts of the Dirac
and Pauli Form factors can be obtained using eq. (4).
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Fig. 3. The pion electromagnetic form factor F(t) in the time-
like region as a function of the momentum transfer ¢. The dia-
monds, squares, and circles show the high statistics data from
the CMD-2 [39], KLOE [40], and SND [41] collaborations, re-
spectively. The dashed, solid, and dash-dotted lines are our
model parametrizations. The inset shows the discrepancy in
the resonance region in more detail.

The P-wave 7w — NN amplitudes f1 () are tabulated
in ref. [42]. (See also ref. [43] for an unpublished update
that is consistent with ref. [42].) We stress that the rep-
resentation of eq. (9) gives the exact isovector spectral
functions for 4M2 <t < 16M2, but in practice holds up
to t ~ 50M2. Since the contributions from 47 and higher
intermediate states is small up to t ~ 50M2, F.(t) and
the f1(t) share the same phase in this region and the two
quantities can be replaced by their absolute values.?

The updated pion form factor is shown in fig. 3. The
diamonds, squares, and circles show the high statistics
data from the CMD-2 [39], KLOE [40], and SND [41]
collaborations, respectively. The dashed, solid, and dash-
dotted lines are our model parametrizations which are of
the Gounaris-Sakurai type [20,30]. The form factor shows
a pronounced p-w mixing in the vicinity of the p-peak.
There are discrepancies between the three experimental
data sets for the pion form factor [41]. The discrepancies
in the p-resonance region are shown in more detail in the
inset of fig. 3. Since we are not in the position to settle this
experimental problem, we will take the three data sets at
face value. We will evaluate the 27 continuum given by
eq. (9) for all three sets and estimate the errors from the
discrepancy between the sets.

Using the new high statistics pion form factor data [39,
40,41] and the amplitudes f1(t) tabulated in ref. [42],
we obtain the spectral functions shown in fig. 4 [38]. We
show the spectral functions weighted by 1/t2 for Gg (solid

2 We note that representation of eq. (9) is most useful for our
purpose. The manifestly real functions Ji(t) = fi(t)/Fx(t)
also tabulated in ref. [42] contain assumptions about the pion
form factor which leads to inconsistencies when used together
with the updated Fr(t).
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Fig. 4. The 27 spectral function using the new high statistics
data for the pion form factor [39,40,41]. The spectral functions
weighted by 1/t? are shown for Gg (solid line) and Gas (dash-
dotted line) in units of 1/M2. The previous results by Hohler
et al. [42] (without p-w mixing) are shown for comparison by
the green lines.

line) and G (dash-dotted line). The previous results by
Hohler et al. [42] (without p-w mixing) are given for com-
parison by the gray/green lines. The general structure of
the two evaluations is the same, but there is a difference
in magnitude of about 10%. The difference between the
three data sets for the pion form factor is very small and
indicated by the line thickness. The difference in the form
factors is largest in the p-peak region (cf. fig. 3), but this
region is suppressed by the 77 — NN amplitudes f1(t)
which show a strong fall-off as ¢ increases.

The spectral functions have two distinct features.
First, as already pointed out in [15], they contain the
important contribution of the p-meson with its peak at
t ~ 30M2. Second, on the left shoulder of the p, the
isovector spectral functions display a very pronounced en-
hancement close to the two-pion threshold. This is due to
the logarithmic singularity on the second Riemann sheet
located at t. = 4M2 — M2/M? = 3.98M2, very close to
the threshold. This pole comes from the projection of the
nucleon Born graphs, or in modern language, from the
triangle diagram.

If one were to neglect this important unitarity correc-
tion, one would severely underestimate the nucleon isovec-

tor radii [17],
6 [ dt
=2 [ G mGre,
™ 4]\472r t

(10)
where ¢ = E, M. In fact, precisely the same effect is ob-
tained at leading one-loop accuracy in relativistic chiral
perturbation theory [44,45]. This topic was also discussed
in heavy baryon ChPT [25,27] and in a covariant calcula-
tion based on infrared regularization [26]. Thus, the most
important 27 contribution to the nucleon form factors can
be determined by using either unitarity or ChPT (in the
latter case, of course, the p contribution is not included).
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Fig. 5. lllustration of the spectral function used in the disper-
sion analysis. The vertical dashed line separates the well-known
low-mass contributions (27, KK, and pr continua as well as
the w pole) from the effective poles at higher momentum trans-
fers.

5 Spectral functions

As discussed above the spectral function can at present
only be obtained from unitarity arguments for the lightest
two-particle intermediate states (2r and K K) [19,36,37].
The pm continuum contribution can be obtained from the
Bonn-Jiilich model [46].

The remaining contributions can be parametrized by
vector meson poles. On one hand, the lower mass poles can
be identified with physical vector mesons such as the w and
the ¢. In the the case of the 37 continuum, e.g., it has been
shown in ChPT that the nonresonant contribution is very
small and the spectral function is dominated by the w [25].
The higher mass poles on the other hand, are simply an
effective way to parametrize higher mass strength in the
spectral function.

For our current best fit, the spectral function includes
the 27, KK, and pr continua from unitarity and the w
pole. In addition to that there are a number of effective
poles at higher momentum transfers in both the isoscalar
and isovector channels. The spectral function then has the
general structure

Im F(t) = Im FXE(t) 4 Im FP™(t)
+ ) malS(MY —t), i=1,2,

V=w,s1,...

Im FP(t) = Im F?™(t)

+ Y male(ME-t), i=1.2
V:’Ul,...

(12)

which is illustrated in in fig. 5. The vertical dashed line
separates the well-known low-mass contributions to the
spectral function from the effective poles at higher mo-
mentum transfers.

In our fits, we also include the widths of the vector
mesons. The width and mass of the w are taken from the
particle data tables while the masses and widths of the
effective poles are fitted to the form factor data. We have
performed various fits with different numbers of effective
poles and including/excluding some of the continuum con-
tributions. In sect. 7, we will discuss preliminary results
of this ongoing effort.
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6 Constraints

The number of parameters in the fit function is reduced by
enforcing various constraints. The first set of constraints
concerns the low-t behavior of the form factors. First,
we enforce the correct normalization of the form factors,
which is given in eq. (2). Second, we constrain the neutron
radius from a low-energy neutron-atom scattering experi-
ment [47,48].

Perturbative QCD (pQCD) constrains the behavior of
the nucleon em form factors for large momentum transfer.
Brodsky and Lepage [49] find for ¢ — —oo,

Fi(t) — (—t)~(+D) [m (é)}_w i=12 (13)

0

where Qo ~ Agcp. The anomalous dimension vy depends
weakly on the number of flavors, v = 2.148, 2.160, 2.173
for Ny =3, 4, 5, in order.

The power behavior of the form factors at large ¢ can
be easily understood from perturbative gluon exchange.
In order to distribute the momentum transfer from the
virtual photon to all three quarks in the nucleon, at least
two massless gluons have to be exchanged. Since each of
the gluons has a propagator ~ 1/t, the form factor has
to fall off as 1/t2. In the case of Fy, there is additional
suppression by 1/t since a quark spin has to be flipped.
The power behavior of the form factors leads to supercon-
vergence relations of the form

/ Im F,(t) t"dt = 0,

to

(14)

with n = 0 for F} and n = 0,1 for F5. The asymptotic
behavior of eq. (13) is obtained by choosing the residues of
the vector meson pole terms such that the leading terms
in the 1/t-expansion cancel.

The logarithmic term in eq. (13) was included in some
of our earlier analyses [20,21,23] but has little impact
on the fit. The particular way this constraint was imple-
mented, however, lead to an unphysical logarithmic singu-
larity of the form factors in the time-like region. In order
to be able to include the data for the form factors at large
time-like momentum transfers, the logarithmic constraint
is not enforced in the current analysis.

The number of effective poles in egs. (11, 12) is deter-
mined by the stability criterion discussed in detail in [50].
In short, we take the minimum number of poles necessary
to fit the data. For the preliminary results discussed in the
next section, we took 4 effective isoscalar poles and 3 ef-
fective isovector poles whose residua, masses, and widths
are fitted to the data. The number of free parameters is
strongly reduced by the various constraints (unitarity, nor-
malizations, superconvergence relations), so that we end
up with 19 free parameters in the preliminary fit presented
in the next section. Our general strategy is to reduce the
number of parameters even further without sacrificing the
quality of the fit.

7 Fit results

We now discuss some preliminary fit results that are repre-
sentative for the current status of the analysis. We present
results for a fit with 4 effective isoscalar poles and 3 effec-
tive isovector poles whose residua, masses, and widths are
fitted to the data.

In fig. 6, we show the results for all four form factors
compared to the world data for the form factors. Our data
basis is taken from ref. [34] and in addition also includes
the new data that have appeared since 2003 (see ref. [5]).
The results for G, G%,, G4, are normalized to the phe-
nomenological dipole fit:

an@=(1+Z) " (1)

D

where m%, = 0.71 GeV?. The dash-dotted line gives the
result of ref. [23], while the the solid line indicates our
present best fit. The new fit leads to an improved descrip-
tion of the form factor data compared with ref. [23]. In
particular, the rapid fall-off of the JLab polarization data
for G%, [51,52] is now described. The x? per degree of
freedom is 0.84. Note that we do not obtain a pronounced
bump structure in G% as observed in ref. [34]. We will
come back to this question in sect. 9 and discuss the mod-
ifications in the spectral function required to produce this
structure.

The stability constraint requires to use the minimum
number of poles required to describe the data [50]. In the
future, we plan to further reduce the number of effective
poles in order to improve the stability.

Table 1. Nucleon radii in fm extracted from the fit in fig. 6.

| |  This work [ Ref. [23] | Recent determ. |
T [im] | 0.84..0.857 | 0.848 | 0.886(15) [53,54,55]
P [fm] | 0.85..0.875 | 0.857 | 0.855(35) [54,56]
o [fm] | —0.12..-0.10 | —0.12 —0.115(4) [48]
i [fm] | 0.86...0.88 0.879 0.873(11) [57]

In Table 1, we give the nucleon radii extracted from
our fit. The neutron radius is included as a soft constraint
in our fit and therefore not a prediction.® The other nu-
cleon radii are generally in good agreement with other
recent determinations using only low-momentum-transfer
data given in the table. Our result for the proton radius,
however, is somewhat small. This was already the case in
the dispersion analyses of refs. [20,23]. We speculate that
the reason for this discrepancy lies in inconsistencies in the
data sets. In this type of global analysis all four form fac-
tors are analyzed simultaneously and both data at small
and large momentum transfers enter. This can be an ad-
vantage or a disadvantage depending on the question at
hand. Another possible reason for the discrepancy is 27
physics which was neglected in the data analysis of most
older experiments [58].

3 A soft constraint is not implemented exactly but deviations
from the constraint are penalized in the x? of the fit.
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Fig. 6. The nucleon electromagnetic form factors for space-like momentum transfer. The results for G;, G%,, G4, are normalized
to the dipole fit. The dash-dotted line gives the result of ref. [23], while the the solid line indicates our preliminary best fit.

8 Time-like data

We have also performed first fits that include data in
the time-like region. The extraction of these data is more
challenging than in the space-like region. At the nucleon-
antinucleon threshold, the electric and magnetic form fac-
tors are equal by definition: G (4M?) = G (4M?), while
one expects the magnetic form factor to dominate at large
momentum transfer. Moreover, the form factors are com-
plex in the time-like region, since several physical thresh-
olds are open. Separating |G| and |G g| unambiguously
from the data requires a measurement of the angular dis-
tribution, which is difficult. In most experiments, it has
been assumed that either |G| = |Gg| (which should be
a good approximation close to the two-nucleon threshold)
or |Gg| = 0 (which should be a good approximation for
large momentum transfers). Most recent data have been
presented using the latter hypothesis.

The time-like data were already included in the disper-
sion analyses of refs. [21,22]. The proton magnetic form
factor up to t ~ 6 GeV? was well described by these anal-
yses. Data at higher momentum transfers were not in-
cluded. The data for the neutron magnetic form factor are

from the pioneering FENICE experiment [11]. They have
been analyzed under both the assumption |Gg| = |G|
and |Gg| = 0. The latter hypothesis is favored by the mea-
sured angular distributions [11]. Neither data set could be
described by the analysis [22].

In fig. 7, we show the current status of the analysis of
the time-like data for the magnetic form factors. For the
proton magnetic form factor, data up to momentum trans-
fers t ~ 15 GeV? have been included [6,7,8,9,10]. Our pre-
liminary fit gives a good description in the threshold re-
gion but starts to deviate significantly around ¢t ~ 5 GeV?2.
The data for t > 10 GeV? are well described. This seems
to be due to a slight inconsistency in the data around
5GeV? and for t > 10 GeVZ2. This question deserves fur-
ther attention.

The status for the neutron form factor is the same as
in the previous analysis [22]: Neither of the two data sets
from ref. [11] can be described. Even though we are not
yet in the region where perturbative QCD is applicable, it
comes as a surprise that the neutron form factor is larger
in magnitude than the proton one. Perturbative QCD pre-
dicts asymptotically equal magnitudes. In any case, there
is interesting physics in the time-like nucleon form factors
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and new precision experiments such as the PANDA and
PAX experiments at GSI would be very welcome.

9 Pion cloud of the nucleon

Friedrich and Walcher (FW) recently analysed the em nu-
cleon form factors and performed various phenomenolog-
ical fits [34]. Their fits showed a pronounced bump struc-
ture in G'% which they interpreted using an ansatz for
the pion cloud based on the idea that the proton can be
thought of as a virtual neutron-positively charged pion
pair. They found a very long-range contribution to the
charge distribution in the Breit frame extending out to
about 2 fm which they attributed to the pion cloud. While
naively the pion Compton wave length is of this size, these
findings are indeed surprising if compared with the “pion
cloud” contribution due to the 27 continuum contribution
to the isovector spectral functions discussed in sect. 4.
As was shown by Hammer, Drechsel, and Meifiner [35],
these latter contributions to the long-range part of the
nucleon structure are much more confined in coordinate
space and agree well with earlier (but less systematic) cal-
culations based on chiral soliton models, see, e.g., [59].
In the dispersion-theoretical framework, the longest-range
part of the pion cloud contribution to the nucleon form

4nrp(r) [1/fm]

%%0

Fig. 8. Pion cloud contribution to the nucleon charge density.
The lines show the result of Friedrich and Walcher [34], while
the bands give the result of ref. [35]. Only the long-range con-
tributions for r 2 1fm are meaningful for the comparison of
the two results.

factors is given by the 27 continuum — the lowest-mass
intermediate state including only pions. Note that a one-
pion intermediate state is forbidden by parity.

The nonresonant part of the 27 continuum can be cal-
culated in ChPT [27] while the full continuum can be ob-
tained from experimental data and unitarity as discussed
in sect. 4. The “pion cloud” corresponds to the nonres-
onant part of the 27 continuum excluding the p. Conse-
quently, the p contribution has to be subtracted from the
full 27 continuum.* The error in this subtraction was es-
timated using three different methods for the separation
of the contributions [35].

The charge distribution can then be obtained from the
nonresonant part of the 2w continuum by Fourier trans-
formation. This leads to the relation:

1 40M2 eVt
(r) = — dt Im G7 (¢
P = g [, G0

(16)

where ¢ = E, M. The 27 contribution from ¢ > 40M§ is
small and can be neglected [35].

The result for the pion cloud contribution to the nu-
cleon charge density is shown in fig. 8. The lines show
the result of FW [34], while the bands give the result of
ref. [35]. Only the long-range contributions for r 2 1fm
should be compared since the separation of the short-
range part into resonant and nonresonant contributions
is arbitrary. In comparison with ref. [34], the 27 contin-
uum contribution to the charge density is generally much
smaller at distances beyond 1fm, e.g., by a factor of 3 for
p%(r) at r = 1.5fm. We emphasize that this result is ob-
tained from independent physical information that deter-
mines the 27 continuum (pion form factor and 77w — NN
amplitudes, cf. sect. 4) and not from form factor fits.

As a consequence, it remains to be shown how the pro-
posed long-range pion cloud can be reconciled with what

4 Note that this separation is not unique. It is only meaning-
ful for the long-range part. The separation of the short-range
part is model- and even representation-dependent.
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Fig. 9. The neutron electric form factor at low momentum
transfer: present fit with additional low-mass strength (dashed
line) compared to the fits of Friedrich and Walcher [34] (double-

dash-dotted line). For comparison, the fits of sect. 7 (solid line)
and ref. [23] (dash-dotted line) are also shown.

is known from dispersion relations and ChPT. In order to
clarify this issue, we have performed various fits in order
to understand what structures in the spectral function are
required to reproduce the bump in G%. We find that the
structure can only be reproduced if additional low-mass
strength in the spectral function below ¢t < 1GeV? is al-
lowed beyond the 2w, KK, and pr continua and the w
pole. In the fits of sects. 7 and 8 such strength was explic-
itly excluded.

In fig. 9, we show the neutron electric form factor at
low momentum transfer. The fit of FW [34] is given by
the double-dash-dotted line, while the present fit with ad-
ditional low-mass strength is given by the dashed line.
For comparison, we show also the fit of ref. [23] (dash-
dotted line) and the fit from sect. 7 (solid line). The fit
with additional low-mass strength shows a clear bump
structure around Q2 ~ 0.3 GeVZ2. This structure requires
three additional low mass poles: two isoscalar poles at
M2 = 0.13GeV?, 0.54GeV? and one isovector pole at
M2 = 0.30 GeV2. In principle, vector meson dominance
works well for t < 1 GeV? and one should be able to inter-
pret these poles as physical vector mesons. However, no
such vector mesons are known in this region. This raises
the question of whether the effective low-mass poles can
be interpreted as something else?

One possible solution would be to interpret the poles
as effective poles mimicking some continuum contribution.
It is interesting to note that the three low-mass poles hap-
pen to come out at the thresholds of the 37, 47 and 57
continua and are located in the correct isospin channel.
Maybe these higher-order pion continua are more impor-
tant than previously thought and have a threshold en-
hancement similar to the 27 continuum that is accounted
for by the effective poles?

Even though this scenario has a certain appeal, it ap-
pears unlikely given the current state of knowledge. In
ref. [25], the threshold behavior of the 37 continuum was

explicitly calculated in heavy baryon ChPT and no en-
hancement was found. Moreover, the inelasticity from four
pions in 77 scattering and four-pion production in ete~
annihilation at low momentum transfer are known to be

small [42,60,61].

10 Summary & outlook

Dispersion theory simultaneously describes all four nu-
cleon form factors over the whole range of momentum
transfers in both the space-like and time-like regions. It
allows for the inclusion of constraints from other physical
processes, unitarity, and ChPT and therefore is an ideal
tool to analyze the form factor data.

We have presented preliminary results for our new dis-
persion analysis that is currently carried out in Bonn. The
spectral function has been improved and contains the up-
dated 27 continuum [38], as well the KK [36,37] and px
continua [46]. Our preliminary best fit gives a consistent
description of the world data in the space-like region. The
understanding of the time-like form factors is more diffi-
cult and a future challenge for theorists and experimen-
talists alike.

As part of this ongoing theoretical program, many
things remain to be done: The stability constraint requires
to use the minimum number of poles. Our strategy for
the future is to successively reduce the number of poles
without sacrifying the quality of the fit. Furthermore, the
description of the time-like data needs to be improved. In
previous experiments, the separation of G and Gy could
only be carried out under overly simplifying assumptions.
New data, such as planned for the PANDA and PAX ex-
periments at GSI, are therefore called for.

Other improvements concern the quantification of the-
oretical and systematic uncertainties in the analysis, the
inclusion of perturbative QCD corrections beyond super-
convergence (leading logarithms etc.), and the inclusion
of two-photon physics. The latter point might require to
analyze the cross section data directly. Last but not least,
the consequences of the new data for the strange vector
form factors of the nucleon need to be worked out.
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would like to thank Hartmuth Arenhovel, Hartmut Backe, Di-
eter Drechsel, Jorg Friedrich, Karl-Heinz Kaiser, and Thomas
Walcher for a very stimulating and enjoyable time in Mainz.
I have had many personal interactions with them through sci-
entific discussions and/or through lectures and seminars I at-
tended as a student. In particular, I want to thank my PhD
advisor Dieter Drechsel from whom I have learned much about
physics and research.
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